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Abstract To solve nonlinear complementarity problems, the inexact logarithmic-
quadratic proximal (LQP) method solves a system of nonlinear equations (LQP
system) approximately at each iteration. Therefore, the efficiencies of inexact-type
LQP methods depend greatly on the involved inexact criteria used to solve the LQP
systems. This paper relaxes inexact criteria of existing inexact-type LQP methods and
thus makes it easier to solve the LQP system approximately. Based on the approximate
solutions of the LQP systems, a descent method, and a prediction–correction method
are presented. Convergence of the new methods are proved under mild assumptions.
Numerical experiments for solving traffic equilibrium problems demonstrate that the
new methods are more efficient than some existing methods and thus verify that the
new inexact criterion is attractive in practice.

Keywords Nonlinear complementarity problems · Logarithmic-quadratic proximal ·
Descent · Prediction–correction · Inexact criterion

1 Introduction

The finite-dimensional nonlinear complementarity problem (NCP) is to determine a
vector x ∈ Rn such that

x ≥ 0, F(x) ≥ 0 and xTF(x) = 0, (1.1)

where F is a mapping from Rn into itself. Throughout we assume that F is contin-
uous and monotone and that the solution set of (1.1) denoted by X ∗ is nonempty.
We refer to, e.g., [10,16], for NCP’s various applications arising in operation research,

X.-M Yuan (B)
Department of Management Science, Antai College of Economics and Management, Shanghai
Jiao Tong University, Shanghai, 200052, China
e-mail: xmyuan@sjtu.edu.cn



530 J Glob Optim (2008) 40:529–543

transportation research, engineering, economic equilibrium, mathematical program-
ming, etc.

The well known proximal point algorithm (PPA), which was presented originally
by Martinet [15] for finding roots of maximal monotone operators, is applicable for
solving NCP. In particular, let xk be the current approximation of a solution of (1.1),
then PPA generates the new iterate xk+1 by solving the following auxiliary NCP:

x ≥ 0, ckF(x) + (x − xk) ≥ 0 and xT(
ckF(x) + (x − xk)

) = 0, (1.2)

where ck ∈ [c, ∞) is the proximal parameter and c > 0. Compared to the monotone
NCP (1.1), (1.2) is easier to handle since it is a strong monotone NCP. For more
developments on PPA, we refer to, e.g., [1,4,7–9,11,17,18].

The logarithmic-quadratic proximal (LQP) method presented in [2] improves the
PPA by replacing the linear term x − xk with

x − (1 − µ)xk − µX2
kx−1,

where µ ∈ (0, 1) is a given constant, Xk = diag(xk
1 , xk

2 , . . . , xk
n) and x−1 is a n-vector

whose jth element is 1/xj. At the kth iteration, solving NCP by the LQP method
is equivalent to finding the positive solution of the following system of nonlinear
equations (LQP system for convenience)

ckF(x) + x − (1 − µ)xk − µX2
kx−1 = 0. (1.3)

Since in general solving the LQP system is much easier than solving the auxiliary NCP
(1.2), the LQP method provides a very powerful approach to solving NCP. Note that
exact solutions of the LQP system cannot be obtained trivially. Therefore, the more
practical version of the LQP method is the inexact LQP method presented also in [2],
which solves the LQP system approximately in the following sense: find xk+1 ∈ Rn++
and ξk ∈ Rn such that

ckF(x) + x − (1 − µ)xk − µX2
kx−1 = ξk (1.4)

and
∞∑

k=0

‖ξk‖ < +∞ and
∞∑

k=0

〈ξk, xk〉 < +∞. (1.5)

Note that (1.5) implies that the involved LQP systems need to be solved with increas-
ing accuracies, which probably results in computational difficulties. Therefore, it is
worthy to investigate extensively how to relax existing inexact criteria used to solve
the involved LQP system. The first contribution to overcome this drawback was due
to [5], in which the authors improved (1.5) with relative errors and thus presented a
meaningful modification of the inexact LQP method. The attractive characteristic of
the new method is that the relative errors for solving the LQP system approximately,
which is denoted by

‖ξk‖
‖xk − xk+1‖

can be fixed on a constant. Recently, Xu and Bnouhachem [19] improved the inexact
LQP method in the sense that the restriction on ξk is relaxed to

‖ξk‖ ≤ η

√
1 − µ2‖xk − xk+1‖ with η ∈ (0, 1), (1.6)
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which implies that the relative errors of solving the LQP systems approximately can
be fixed at η

√
1 − µ2. Based on (1.6), a descent direction of ‖x − x∗‖2 at the point xk

was constructed and thus a descent algorithm was presented in [19]. The consequent
improvement in this direction is the prediction–correction approach presented in [21],
which uses the inexact LQP method under (1.6) to predict the new iterate and then
uses PPA to correct the prediction. For most recent developments on inexact-type
LQP methods, we refer to [13,14].

For solving the involved LQP systems more efficiently, this paper presents a new
inexact criterion (see (2.2)), which allows the LQP system to be solved under very
relaxed restriction and thus improves the existing inexact-type LQP methods. In addi-
tion, approximate solutions of the LQP system are used to construct a descent method
and a prediction–correction approach analogous to [19,21], respectively. Both of the
new methods are easy to implement. Numerical applications to traffic equilibrium
problems demonstrate that the new methods are very efficient, and thus verify that
the new inexact criterion is practical.

The rest of the paper is organized as follows. The descent method and some of
its contractive propositions are presented in Sect. 2. In Sect. 3, we present the pre-
diction–correction method and some of its theoretical results. Section 4 focuses on
how to choose the optimal step sizes and concerns convergence of the new methods.
Some numerical results are reported in Sect. 5. Finally, some conclusions are drawn
in Sect. 6.

2 The derived descent method

We first give the descent method and then prove some contractive propositions.
Let PRn+ denote the projection onto Rn+ under Euclidean norm:

PRn+(v) = argmin{‖u − v‖ : u ∈ Rn+}.
Given constants c > 0, η ∈ (0, 1), r > η, µ ∈ (0, 1), and γ ∈ (0, 2) and starting from
x0 ∈ Rn++ , the new iterate xk+1 is generated by
Step 0 Choose ck ≥ c.
Step 1 Inexact LQP step
Find x̃k ∈ Rn+ and ξk ∈ Rn such that

ckF(x̃k) + x̃k − (1 − µ)xk − µX2
k(x̃k)−1 = ξk (2.1)

with the inexact criterion:

|(ξk)T(xk − x̃k)|
‖xk − x̃k‖2

≤ η and
‖ξk‖

‖xk − x̃k‖ ≤ r(1 + µ); (2.2)

Step 2 Descent step

xk+1
d (αk) = PRn+[xk − αkd(xk, x̃k, ξk, µ)], (2.3)

where

d(xk, x̃k, ξk, µ) = (xk − x̃k) + 1
1+µ

ξk, (2.4)

ϕ(xk, x̃k, ξk, µ) = 1
1+µ

‖xk − x̃k‖2 + 1
1+µ

(xk − x̃k)Tξk (2.5)
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and

αk = γ
ϕ(xk, x̃k, ξk, µ)

‖d(xk, x̃k, ξk, µ)‖2
. (2.6)

Remark 2.1 As pointed in [13], the inexact LQP step (2.1) is implementable. For exam-
ple, in the case that F is Lipschitz continuous with constant L on Rn+ , we particularly
take ξk = ck(F(x̃k) − F(xk)). Then the criterion (2.2) can be satisfied via choosing a
suitable ck > 0 and the inexact LQP system (2.1) reduces to

ckF(xk) + x̃k − (1 − µ)xk − µX2
k(x̃k)−1 = 0,

whose positive solution can be computed explicitly:

x̃k
j =

(1 − µ)xk
j − ckFj(xk) +

√
[(1 − µ)xk

j − ckFj(xk)]2 + 4µ(xk
j )2

2
.

Remark 2.2 Note that convergence of the new method can also be guaranteed under
the stricter inexact criterion ‖ξk‖ ≤ η‖xk − x̃k‖, which implies that the relative errors
of solving the involved LQP systems approximately can only be fixed at η ∈ (0, 1).
Note that r can take any positive value greater than η. Therefore, the inexact criterion
(2.2) allows the involved LQP systems to be solved approximately under very relaxed
criterion and thus reduces the computational load considerably.

Remark 2.3 The new derived descent method differs from the hybrid method in [19]
mainly in that the inexact criterion (1.6) is relaxed to (2.2). This relaxation is particularly
preferable in practice, which will be verified by the numerical reports.

Remark 2.4 The theoretical reasons of choosing the optimal step size αk and why
γ ∈ (0, 2) will be discussed later.

We first list some fundamental lemmas that are useful in the consequent analysis.
The first lemma provides some basic inequalities of projection onto Rn+ without proof,
see, e.g., [22].

Lemma 2.1 Let PRn+ denote the projection onto Rn+ under Euclidean norm. Then we
have the following fundamental inequalities:

{z − PRn+ (z)}T{x − PRn+ (z)} ≤ 0, ∀x ∈ Rn+ , ∀z ∈ Rn, (2.7)

‖PRn+ (y) − PRn+ (z)‖ ≤ ‖y − z‖, ∀y, z ∈ Rn, (2.8)

‖PRn+ (y) − x‖2 ≤ ‖y − x‖2 − ‖y − PRn+ (y)‖2, ∀x ∈ Rn+ , ∀y ∈ Rn. (2.9)

The following is a basic lemma in the analysis of the LQP method and its variants.
We omit the proof, which can be found in, e.g., [2,5,13].

Lemma 2.2 For given xk ∈ Rn+ and ck > 0, let x̃k and ξk be obtained by (2.1), then for
any x ∈ Rn+ we have

(̃xk − x)T(ξk − ckF(x̃k)) ≥ 1+µ
2

(
‖̃xk − x‖2 − ‖xk − x‖2

)
+ 1−µ

2 ‖xk − x̃k‖2 (2.10)
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and

(̃xk − x)T(ξk − ckF(x̃k)) ≥ (xk − x̃k)T
(
(1 + µ)x − (µxk + x̃k)

)
. (2.11)

The following theorem provides the theoretical reason of designing the descent
method (2.3).

Theorem 2.1 Let x∗ be any solution of (1.1). For given xk ∈ Rn+ and ck > 0, let x̃k and
ξk be obtained by (2.1) and (2.2); let d(xk, x̃k, ξk, µ) and ϕ(xk, x̃k, ξk, µ) be defined by
(2.4) and (2.5), respectively, then it holds

(xk − x∗)
d(xk, x̃k, ξk, µ) ≥ ϕ(xk, x̃k, ξk, µ) ≥ 1 − η

1 + µ
‖xk − x̃k‖2. (2.12)

Proof Since F is monotone and x∗ is a solution, we get

(̃xk − x∗)
F (̃xk) ≥ (̃xk − x∗)
F(x∗) ≥ 0.

Then it follows from (2.10) that

(̃xk − x∗)
ξk ≥ 1 + µ

2

(
‖̃xk − x∗‖2 − ‖xk − x∗‖2

)
+ 1 − µ

2
‖xk − x̃k‖2

+ ck(̃xk − x∗)
F (̃xk),

which implies that

1
1 + µ

(xk − x∗)
ξk ≥ 1
2

(
‖̃xk − x∗‖2 − ‖xk − x∗‖2

)
+ 1 − µ

2(1 + µ)
‖xk − x̃k‖2

+ 1
1 + µ

(xk − x̃k)
ξk. (2.13)

Note the following identity

(xk − x∗)
(xk − x̃k) = 1
2

(
‖xk − x∗‖2 − ‖̃xk − x∗‖2

)
+ 1

2
‖xk − x̃k‖2. (2.14)

Therefore from (2.4), (2.5) (2.13), and (2.14), we have

(xk − x∗)
d(xk, x̃k, ξk, µ) = (xk − x∗)
(xk − x̃k) + 1
1 + µ

(xk − x∗)
ξk

≥ 1
(1 + µ)

‖xk − x̃k‖2 + 1
1 + µ

(xk − x̃k)
ξk

= ϕ(xk, x̃k, ξk, µ),

which is the first inequality in (2.12).
Since (2.2) implies that

(xk − x̃k)T(ξk) ≥ −η‖xk − x̃k‖2

the second inequality in (2.12) is obvious.
Theorem 2.1 shows that d(xk, x̃k, ξk, µ) is a descent direction of ‖x−x∗‖2 at x = xk.

Therefore, it is nature to design the descent method (2.3). Obviously, it is worthy to
investigate the strategy of choosing the optimal step size along the descent direction
from computational points of view. For this purpose, we denote

xk+1
d (α) := PRn+[xk − αd(xk, x̃k, ξk, µ)]. (2.15)
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For any solution of (1.1) x∗, then

�k
d(α) := ‖xk − x∗‖2 − ‖xk+1

d (α) − x∗‖2 (2.16)

measures the progress of the iterate generated by the descent method (2.3) taking α

as the step size. The following theorem motivates the strategy of choosing αk in the
form of (2.6). ��
Theorem 2.2 Let x∗ be any solution of (1.1). For given xk ∈ Rn+ and ck > 0, let x̃k and
ξk be obtained by (2.1) and (2.2); let d(xk, x̃k, ξk, µ) and ϕ(xk, x̃k, ξk, µ) be defined by
(2.4) and (2.5), respectively. If the step size in the descent step (2.3) is α, i.e., the new
iterate is xk+1

d (α) defined by (2.15); and �k
d(α) is defined by (2.16), then we have

�k
d(α) ≥ �k(α) := 2αϕ(xk, x̃k, ξk, µ) − α2‖d(xk, x̃k, ξk, µ)‖2. (2.17)

Proof

‖xk+1(α) − x∗‖2 = ∥
∥PRn+[xk − αd(xk, x̃k, ξk, µ)] − x∗∥∥2

≤ ‖xk − x∗ − αd(xk, x̃k, ξk, µ)‖2

= ‖xk − x∗‖2 − 2α(xk − x∗)
d(xk, x̃k, ξk, µ) + α2‖d(xk, x̃k, ξk, µ)‖2

≤ ‖xk − x∗‖2 − 2αϕk(xk, x̃k, ξk, µ) + α2‖d(xk, x̃k, ξk, µ)‖2, (2.18)

where the inequalities are guaranteed by (2.8) and (2.12), respectively. Therefore, the
assertion (2.17) is proved.

3 The derived prediction–correction method

Given constants c > 0, η ∈ (0, 1), r > η, µ ∈ (0, 1), and γ ∈ (0, 2) and starting from
x0 ∈ Rn++, each iteration consists of the following steps:
Step 0 Choose ck ≥ c.
Step 1 Inexact LQP step (prediction step)
Solving the LQP system approximately in the sense of (2.1) and (2.2) and thus obtain
the predictor x̃k ∈ Rn+.
Step 2 PPA step (correction step)

xk+1
pc (αk) = PRn+[xk − αk

ck

1 + µ
F(x̃k)], (3.1)

where d(xk, x̃k, ξk, µ), ϕ(xk, x̃k, ξk, µ), and αk are defined by (2.4)–(2.6), respectively.

Remark 3.5 It is well known [6] that solving (1.2) is equivalent to solving the following
equation:

x = PRn+[xk − ckF(x)]. (3.2)

Note that (3.2) is a nonsmooth equation and the new iterate xk+1 cannot be computed
directly via (3.2) since it is an implicit scheme. This difficulty makes straightforward
applications of PPA impractical in many cases. The hybrid method in [21] provides
a prediction–correction approach to make PPA implementable. In particular, it solves
the LQP system (2.1) under (1.6) to obtain the predictor x̃k ∈ Rn+ and then computes
the new iterate xk+1 by (3.1). The new derived prediction–correction method improves
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the method in [21] with the practical characteristic that (1.6) is replaced by the relaxed
criterion (2.2). The numerical results to be reported demonstrate that this improvement
reduces computational efforts considerably.

Similarly, we denote

xk+1
pc (α) := PRn+

[
xk − α

(
ck

1 + µ
F(x̃k)

)]
. (3.3)

For any solution of (1.1) x∗, then

�k
pc(α) := ‖xk − x∗‖2 − ‖xk+1

pc (α) − x∗‖2 (3.4)

measures the progress of the iterate generated by the prediction–correction method
(3.1) taking α as the step size.

Theorem 3.1 Let x∗ be any solution of (1.1). For given xk ∈ Rn+ and ck > 0, let x̃k and
ξk be obtained by (2.1) and (2.2); let d(xk, x̃k, ξk, µ) and ϕ(xk, x̃k, ξk, µ) be defined by
(2.4) and (2.5), respectively. If the step size in the prediction–correction step (3.1) is α,
i.e., the new iterate is xk+1

pc (α) defined by (3.3); �k
pc(α) is defined by (3.4) and �k(α) is

defined in (2.17). Then we have

�k
pc(α) ≥ �k(α). (3.5)

Proof We omit the proof since it is analogous to that of Theorem 3.1 in [21].

4 Convergence

In this section, convergence of the new methods are proved under mild assumptions.
First, we explain the reason of choosing the step size αk in the new methods (2.3) and
(3.1).

Note that �k(α) is referred to the profit-function since it is a lower-bound of the
progress obtained by the new iterates. Theorems 2.2 and 3.1 motivate us to maximize
the profit-function �k(α) to accelerate convergence of the new methods. Note that
�k(α) is a quadratic function of α and it reaches its maximum at

α∗ = ϕ(xk, x̃k, ξk, µ)

‖d(xk, x̃k, ξk, µ)‖2
with �k(α∗) = α∗ϕ(xk, x̃k, ξk, µ). (4.1)

The following lemma concerns the nice proposition of α∗ and justifies the theoret-
ical reason of choosing α∗.

Lemma 4.1 Let µ, η, r be given in the algorithm. Let α∗ be defined by (4.1) and
δ ≥ max{r, 1} be a constant. Then we have

α∗ ≥ 1 − η

(1 + δ2)(1 + µ)
. (4.2)

Proof Case 1 (xk − x̃k)Tξk ≤ 0.
It follows from the definition of d(xk, x̃k, ξk, µ), (2.2), and δ ≥ max{r, 1} that

‖d(xk, x̃k, ξk, µ)‖2 ≤ ‖xk − x̃k‖2 + 1

(1 + µ)2 ‖ξk‖2 ≤ (1 + r2)‖xk − x̃k‖2 ≤ (1 + δ2)‖xk − x̃k‖2.
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Note that

ϕ(xk, x̃k, ξk, µ) = 1
1+µ

‖xk − x̃k‖2 + 1
1+µ

(xk − x̃k)Tξk ≥ 1 − η

1 + µ
‖xk − x̃k‖2. (4.3)

Hence, the assertion (4.2) is proved in this case.
Case 2 (xk − x̃k)Tξk > 0.
It follows from the definition of d(xk, x̃k, ξk, µ), ϕ(xk, x̃k, ξk, µ), (2.2), µ ∈ (0, 1),

and δ ≥ max{r, 1} that

(1 + µ)ϕ(xk, x̃k, ξk, µ) = ‖xk − x̃k‖2 + (xk − x̃k)Tξk

≥ ‖xk − x̃k‖2 + (xk − x̃k)T(
ξk

1 + µ
)

≥ 1
1 + δ2 ‖xk − x̃k‖2 + 2

1 + δ2 (xk − x̃k)T(
ξk

1 + µ
)

+ δ2

1 + δ2 ‖xk − x̃k‖2

≥ 1
1 + δ2 ‖xk − x̃k‖2 + 2

1 + δ2 (xk − x̃k)T(
ξk

1 + µ
)

+ 1
1 + δ2 ‖ ξk

1 + µ
‖2

= 1
1 + δ2 ‖d(xk, x̃k, ξk, µ)‖2. (4.4)

Therefore, we have

α∗ ≥ 1
(1 + δ2)(1 + µ)

,

which implies the assertion (4.2) immediately.
Lemma 4.1 shows that the step size αk of the new methods is bounded away from

zero, which contributes much to the satisfactory efficiencies of the new methods.
From numerical point of view, it is necessary to attach a relax factor to the opti-

mal step size α∗ obtained theoretically to achieve faster convergence. The following
corollary concerns how to choose the relax factor.

Theorem 4.1 Let x∗ be any solution of (1.1). For given xk ∈ Rn+ and ck > 0, let x̃k be
obtained by (2.1) and (2.2); let γ be a positive constant and α∗ be defined by (4.1). If
the step size αk = γα∗ in (2.3) and (3.1). Then there exists a constant ρ > 0, such that

�k(αk) ≥ ρ‖xk − x̃k‖2, ∀k > 0. (4.5)

Proof It follows from (4.1)–(4.3) that

�(α∗) = α∗ϕ(xk, x̃k, ξk, µ) ≥ 1 − η

(1 + δ2)(1 + µ)2 ‖xk − x̃k‖2. (4.6)
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Note that

�(γα∗) (2.17)= 2γα∗ϕ(xk, x̃k, ξk, µ) − (γ 2α∗)(α∗‖d(xk, x̃k, ξk, µ)‖2)

(4.1)= (2γα∗ − γ 2α∗)ϕ(xk, x̃k, ξk, µ)

= γ (2 − γ )�(α∗)
(4.6)≥ γ (2 − γ )(1 − η)

(1 + δ2)(1 + µ)2 ‖xk − x̃k‖2. (4.7)

Thus the assertion (4.5) is proved with ρ := γ (2−γ )(1−η)

(1+δ2)(1+µ)2 > 0.
Theorem 4.1 shows theoretically that any γ ∈ (0, 2) guarantees that the new iter-

ates generated by (2.3) and (3.1) make progress to a solution of (1.1). However, from
numerical experiments, γ ∈ [1, 2) is much preferable since it leads to better numerical
performances. Therefore, in practical computation, we choose

αk = γα∗ = γ
ϕ(xk, x̃k, ξk, µ)

‖d(xk, x̃k, ξk, µ)‖2

with γ ∈ [1, 2) as the step size in both (2.3) and (3.1).
Note that Theorem 4.1 also shows that

‖xk+1
d (αk) − x∗‖2 ≤ ‖xk − x∗‖2 − ρ‖xk − x̃k‖2

and

‖xk+1
pc (αk) − x∗‖2 ≤ ‖xk − x∗‖2 − ρ‖xk − x̃k‖2,

which implies that the sequence {xk} generated by either the descent method (2.3) or
the prediction–correction method (3.1) is Féjer monotone with respect to the solution
set of (1.1), see, e.g., [3]. Therefore, the following corollary is concluded immediately
from Theorem 4.1.

Corollary 4.1 Let x∗ be any solution of (1.1). The sequences {xk} and {x̃k} are gener-
ated by the descent method (2.3) (or the prediction–correction method (3.1)), then
we have

(1) The sequence {xk} is bounded.
(2) The sequence {‖xk − x∗‖} is nonincreasing.
(3) Limk→∞‖xk − x̃k‖ = 0.
(4) The sequence {x̃k} is bounded.

Now we are ready to prove convergence of the new methods.

Theorem 4.2 The sequences {xk} generated by either the descent method (2.3) or the
prediction–correction method (3.1) converges to some x∞ which is a solution of (1.1).

Proof It follows from (2.11) that

(x − x̃k)T(ckF(x̃k)) ≥ (xk − x̃k)T
(
(1 + µ)x − (µxk + x̃k)

)

+(x − x̃k)Tξk, ∀x ∈ Rn+ .

Since limk→∞ ‖xk − x̃k‖ = 0 (see (3) of Corollary. 4.1), it follows from (2.2) that
limk→∞ ‖ξk‖ = 0. Note that both {xk} and {x̃k} are bounded and ck ≥ c > 0, we have

lim inf
k→∞

(x − x̃k)TF (̃xk) ≥ 0, ∀x ∈ Rn+ .
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Since {̃xk} is bounded (see (4) of Corollary. 4.1), it has at least a cluster point. Let x∞
be a cluster point of {̃xk} and the subsequence {̃xkj} converges to x∞. It follows that

lim inf
j→∞ (x − x̃kj)TF (̃xkj) ≥ 0, ∀x ∈ Rn+

and consequently

(x − x∞)TF(x∞) ≥ 0, ∀x ∈ Rn+ ,

which means that x∞ is a solution of (1.1). Hence, from (2) of Corollary. 4.1, we have

‖xk+1 − x∞‖2 ≤ ‖xk − x∞‖2, ∀k ≥ 0. (4.8)

Since x̃kj → x∞(j → ∞) and xk − x̃k → 0(k → ∞), for any given ε > 0, there exists
an l > 0 such that

‖̃xkl − x∞‖ < ε/2 and ‖xkl − x̃kl‖ < ε/2. (4.9)

Therefore, for any k ≥ kl, it follows from (4.8) and (4.9)that

‖xk − x∞‖ ≤ ‖xkl − x∞‖ ≤ ‖xkl − x̃kl‖ + ‖̃xkl − x∞‖ ≤ ε.

This implies that the sequence {xk} converges to x∞, which is a solution of (1.1).

5 Numerical experiments

In this section, we apply the new derived descent method and prediction–correction
method to a traffic equilibrium problem, which is a classical and important prob-
lem in transportation, see, e.g., [12,20]. The satisfactory numerical results verify the
theoretical assertions in aforementioned sections in computational senses and thus
demonstrate that the inexact criterion (2.2) is preferable to (1.6) in practice. In par-
ticular, we compare the numerical results of the new derived methods to the hybrid
methods in [19,21], respectively.

We first illustrate the traffic equilibrium problem. Consider a network [N, L] of
nodes N and directed links L, which consists of a finite sequence of connecting links
with a certain orientation. Let a, b, etc., denote the links; p, q, etc., denote the paths; ω
denote an origin/destination (O/D) pair of nodes of the network; Pω denote the set of
all paths connecting the O/D pair ω; xp represent the traffic flow on path p; dω denote
the traffic demand between O/D pair ω, which must satisfy

dω =
∑

p∈Pω

xp,

where xp ≥ 0, ∀p; fa denotes the link load on link a, which must satisfy the following
conservation of flow equation

fa =
∑

p∈P

δapxp,

where

δap =
{

1, if a is contained in path p;
0, otherwise.
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Let A be the path-arc incidence matrix of the given problem and f = {fa, a ∈ L} be
the vector of the link load. Since x is the path-flow, f is given by

f = ATx.

In addition, let t = {ta, a ∈ L} be the vector of link costs, with ta denoting the user cost
of traversing link a which is given by

ta(fa) = t0a
[
1 + 0.15

( fa

Ca

)4]
, (5.1)

where t0a is the free-flow travel cost on link a and Ca is the designed capacity of link a.
Then t is a mapping of the path-flow x and its mathematical form is

t(x) := t(f ) = t(ATx).

Note that the travel cost on the path p denoted by θp is

θp =
∑

a∈L

δapta(fa).

Let P denote the set of all the paths concerned. Let θ = {θp, p ∈ P} be the vector of
(path) travel cost. Therefore, for a given link travel cost vector t, θ is a mapping of the
path-flow x, which is given by

θ(x) := At(x) = At(ATx).

Associated with every O/D pair ω, there is a travel disutility λω, which is defined
as following

λω(d) = −mω log(dω) + qω. (5.2)

Note that both the path costs and the travel disutilities are functions of the flow pattern
x.

The traffic network equilibrium problem is to seek the path flow pattern x∗, which
induces a demand pattern d∗ = d(x∗), for every O/D pair ω and each path p ∈ Pω,

Fp(x) = θp(x) − λω(d(x)).

The problem can be reduced to a monotone NCP in the space of path-flow pattern x:
Find x ∈ Rn such that

x ≥ 0, F(x) ≥ 0 and xTF(x) = 0. (5.3)

In particular, we test the example studied in [12,20]. The network is depicted in
Fig. 1. The free-flow travel cost and the designed capacity of links in (5.1) are given in
Table 1, the O/D pairs and the coefficient m and q in the disutility function (5.2) are
given in Table 5. For this example, there are together 12 paths for the four given O/D
pairs as listed in Table 5.

All codes are written by Matlab 7.0 and run on an IBM T42 laptop. The stopping
criterion is

‖ min{x, F(x)}‖∞ ≤ ε.

We test the above traffic equilibrium problem with different ε and compare the
new derived methods to the hybrid methods in [19,21]. The initial point is x0 =
(0.05, 0.05, . . . , 0.05)T ; µ = 0.01, and c0 = 1, as in [21]. Let (η, γ ) = (0.95, 1.95) as
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Fig. 1 The network used for
the numerical test

Table 1 The free-flow travel cost and the designed capacity of links in (5.1)

Link Free-flow Travel time t0a Capacity Ca Link Free-flow Travel time t0a Capacity Ca

1 6 200 7 5 150
2 5 200 8 10 150
3 6 200 9 11 200
4 16 200 10 11 200
5 6 100 11 15 200
6 1 100 – – –

in [21] when we apply the hybrid methods in [19,21]. Let (r, η, γ ) = (1.5, 0.82, 1.99)

when the new descent method is applied and (r, η, γ ) = (1.5, 0.81, 1.99) when the new
prediction–correction method is applied. Finally, how to choose the proximal param-
eter ck deserves further illustrations. Although theoretically ck ∈ [c, ∞) guarantees
convergence of the algorithms, it is necessary to choose ck self-adaptively during
the implementations for achieving satisfactory numerical performance. We adopt the
strategy in [13] in our numerical experiments. In particular, let

κ1 := |(ξk)T(xk − x̃k)|
‖xk − x̃k‖2

and κ2 := ‖ξk‖
‖xk − x̃k‖

then

ck+1 :=
⎧
⎨

⎩

ck ∗ 0.8/κ2, if κ1 > η or κ2 > r(1 + µ),
ck ∗ 0.7/κ2, if κ2 ≤ 0.1
ck, otherwise.

The respective iterative numbers (No. Iter.) and computational times (CPU (s.))
are reported in the following tables (Tables 3, 4).

For the case that ε = 10−8, the optimal path flow and link flow are given in Tables
5 and 6, respectively.

The above numerical experiments show that both the descend method (2.3) and
the prediction–correction method (3.1) method solve the traffic equilibrium prob-
lem very efficiently. But for this particular traffic equilibrium problem, the iterative
numbers and computational time of (3.1) are no greater than those of (2.3), there-
fore it is preferable slightly. In addition, the comparisons to the hybrid methods in
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Table 2 The O/D pairs and
the coefficient m and q in (5.2)

No. of the pair O/D pair mω qω

1 (1,7) 25 25 log 600
2 (2,7) 33 33 log 500
3 (3,7) 20 20 log 500
4 (6,7) 20 20 log 400

Table 3 Comparison of the
new descent method to the
method in [19]

ε The method in [19] The new descent method

No. Iter. CPU (s) No. Iter. CPU (s)

10−3 122 0.110 82 0.040
10−4 152 0.125 104 0.050
10−5 184 0.144 126 0.081
10−6 213 0.160 144 0.090
10−7 244 0.160 163 0.090
10−8 275 0.188 185 0.125

Table 4 Comparison of the
new PC method to the method
in [21]

ε The method in [21] The new PC method

No. Iter. CPU (s) No. Iter. CPU (s)

10−3 113 0.110 80 0.040
10−4 143 0.121 100 0.050
10−5 174 0.130 119 0.072
10−6 203 0.140 134 0.080
10−7 235 0.160 151 0.090
10−8 263 0.180 171 0.110

Table 5 The optimal path flow O/D pairs Path No. Link on Optimal
the path path-flow

1 (1,3) 165.3145
O/D pair (1,7) 2 (2,4) 0

3 (11) 138.5735
4 (5,1,3) 82.5281
5 (5,2,4) 0

O/D pair (2,7) 6 (5,11) 55.7871
7 (8,6,4) 0
8 (8,9) 87.0260

O/D pair (3,7) 9 (7,3) 19.7549
10 (10) 229.9747

O/D pair (6,7) 11 (9) 178.5600
12 (6,4) 0
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Table 6 The optimal link flow

Link No. Link flow Link No. Link flow Link No. Link flow Link No. Link flow

1 247.8426 4 0 7 19.7549 10 229.9747
2 0 5 138.3152 8 87.0260 11 194.3606
3 267.5974 6 0 9 265.5860 – –

[19,21] demonstrate that the new inexact criterion (2.2) is more practical than (1.6)
in computational senses.

6 Conclusion

This paper contributes a new practical inexact criterion for solving NCP by inex-
act-type LQP methods. Based on the reduced approximate solutions of the involved
LQP system, two new efficient methods are derived. Both of these methods are very
easy to implement and the involved computational loads are very tiny. Numerical
applications to some traffic equilibrium problems demonstrate that the new methods
are more efficient than some existing methods and thus verify that the new inexact
criterion is attractive in practice. How to design other efficient LQP-based numeri-
cal algorithms for variational inequalities and NCP are worthy of further extensive
investigations.
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